Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 17(1): 2, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389209

RESUMO

INTRODUCTION: Because of its ease of collection, urine is one of the most commonly used matrices for metabolomics studies. However, unlike other biofluids, urine exhibits tremendous variability that can introduce confounding inconsistency during result interpretation. Despite many existing techniques to normalize urine samples, there is still no consensus on either which method is most appropriate or how to evaluate these methods. OBJECTIVES: To investigate the impact of several methods and combinations of methods conventionally used in urine metabolomics on the statistical discrimination of two groups in a simple metabolomics study. METHODS: We applied 14 different strategies of normalization to forty urine samples analysed by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). To evaluate the impact of these different strategies, we relied on the ability of each method to reduce confounding variability while retaining variability of interest, as well as the predictability of statistical models. RESULTS: Among all tested normalization methods, osmolality-based normalization gave the best results. Moreover, we demonstrated that normalization using a specific dilution prior to the analysis outperformed post-acquisition normalization. We also demonstrated that the combination of various normalization methods does not necessarily improve statistical discrimination. CONCLUSIONS: This study re-emphasized the importance of normalizing urine samples for metabolomics studies. In addition, it appeared that the choice of method had a significant impact on result quality. Consequently, we suggest osmolality-based normalization as the best method for normalizing urine samples. TRIAL REGISTRATION NUMBER: NCT03335644.


Assuntos
Interpretação Estatística de Dados , Metabolômica/métodos , Concentração Osmolar , Urinálise/métodos , Líquidos Corporais/metabolismo , Cromatografia Líquida , Humanos , Biópsia Líquida , Espectrometria de Massas , Metaboloma , Metabolômica/normas , Urinálise/normas
2.
Anal Chem ; 92(2): 1746-1754, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31854978

RESUMO

Among the numerous unknown metabolites representative of our exposure, focusing on toxic compounds should provide more relevant data to link exposure and health. For that purpose, we developed and applied a global method using data independent acquisition (DIA) in mass spectrometry to profile specifically electrophilic compounds originating metabolites. These compounds are most of the time toxic, due to their chemical reactivity toward nucleophilic sites present in biomacromolecules. The main line of cellular defense against these electrophilic molecules is conjugation to glutathione, then metabolization into mercapturic acid conjugates (MACs). Interestingly, MACs display a characteristic neutral loss in MS/MS experiments that makes it possible to detect all the metabolites displaying this characteristic loss, thanks to the DIA mode, and therefore to highlight the corresponding reactive metabolites. As a proof of concept, our workflow was applied to the toxicological issue of the oxidation of dietary polyunsaturated fatty acids, leading in particular to the formation of toxic alkenals, which lead to MACs upon glutathione conjugation and metabolization. By this way, dozens of MACs were detected and identified. Interestingly, multivariate statistical analyses carried out only on extracted HRMS signals of MACs yield a better characterization of the studied groups compared to results obtained from a classic untargeted metabolomics approach.


Assuntos
Acetilcisteína/metabolismo , Aldeídos/metabolismo , Acetilcisteína/análise , Acetilcisteína/urina , Aldeídos/química , Aldeídos/urina , Animais , Masculino , Metabolômica , Estrutura Molecular , Análise Multivariada , Ratos , Ratos Endogâmicos F344 , Espectrometria de Massas em Tandem
3.
Environ Health Perspect ; 126(6): 067007, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29950287

RESUMO

BACKGROUND: Epidemiological evidence suggests a link between pesticide exposure and the development of metabolic diseases. However, most experimental studies have evaluated the metabolic effects of pesticides using individual molecules, often at nonrelevant doses or in combination with other risk factors such as high-fat diets. OBJECTIVES: We aimed to evaluate, in mice, the metabolic consequences of chronic dietary exposure to a pesticide mixture at nontoxic doses, relevant to consumers' risk assessment. METHODS: A mixture of six pesticides commonly used in France, i.e., boscalid, captan, chlorpyrifos, thiofanate, thiacloprid, and ziram, was incorporated in a standard chow at doses exposing mice to the tolerable daily intake (TDI) of each pesticide. Wild-type (WT) and constitutive androstane receptor-deficient (CAR-/-) male and female mice were exposed for 52 wk. We assessed metabolic parameters [body weight (BW), food and water consumption, glucose tolerance, urinary metabolome] throughout the experiment. At the end of the experiment, we evaluated liver metabolism (histology, transcriptomics, metabolomics, lipidomics) and pesticide detoxification using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Compared to those fed control chow, WT male mice fed pesticide chow had greater BW gain and more adiposity. Moreover, these WT males fed pesticide chow exhibited characteristics of hepatic steatosis and glucose intolerance, which were not observed in those fed control chow. WT exposed female mice exhibited fasting hyperglycemia, higher reduced glutathione (GSH):oxidized glutathione (GSSG) liver ratio and perturbations of gut microbiota-related urinary metabolites compared to WT mice fed control chow. When we performed these experiments on CAR-/- mice, pesticide-exposed CAR-/- males did not exhibit BW gain or changes in glucose metabolism compared to the CAR-/- males fed control chow. Moreover, CAR-/- females fed pesticide chow exhibited pesticide toxicity with higher BWs and mortality rate compared to the CAR-/- females fed control chow. CONCLUSIONS: To our knowledge, we are the first to demonstrate a sexually dimorphic obesogenic and diabetogenic effect of chronic dietary exposure to a common mixture of pesticides at TDI levels, and to provide evidence for a partial role for CAR in an in vivo mouse model. This raises questions about the relevance of TDI for individual pesticides when present in a mixture. https://doi.org/10.1289/EHP2877.


Assuntos
Fungicidas Industriais/toxicidade , Transtornos do Metabolismo de Glucose/induzido quimicamente , Inseticidas/toxicidade , Receptores Citoplasmáticos e Nucleares/genética , Animais , Animais Geneticamente Modificados , Peso Corporal/efeitos dos fármacos , Receptor Constitutivo de Androstano , Exposição Dietética , Fígado Gorduroso/induzido quimicamente , Feminino , Glutationa/metabolismo , Inativação Metabólica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais , Testes de Toxicidade Crônica
4.
Biochem Pharmacol ; 137: 113-124, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461126

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (B[a]P), are widely distributed environmental contaminants exerting toxic effects such as genotoxicity and carcinogenicity, mainly associated with aryl hydrocarbon receptor (AhR) activation and the subsequent induction of cytochromes P-450 (CYP) 1-metabolizing enzymes. We previously reported an up-regulation of AhR expression and activity in primary cultures of human T lymphocyte by a physiological activation. Despite the suggested link between exposure to PAHs and the risk of lymphoma, the potential of activated human T lymphocytes to metabolize AhR exogenous ligands such as B[a]P and produce DNA damage has not been investigated. In the present study, we characterized the genotoxic response of primary activated T lymphocytes to B[a]P. We demonstrated that, following T lymphocyte activation, B[a]P treatment triggers a marked increase in CYP1 expression and activity generating, upon metabolic activation, DNA adducts and double-strand breaks (DSBs) after a 48-h treatment. At this time point, B[a]P also induces a DNA damage response with ataxia telangiectasia mutated kinase activation, thus producing a p53-dependent response and T lymphocyte survival. B[a]P activates DSB repair by mobilizing homologous recombination machinery but also induces gene mutations in activated human T lymphocytes which could consequently drive a cancer process. In conclusion, primary cultures of activated human T lymphocytes represent a good model for studying genotoxic effects of environmental contaminants such as PAHs, and predicting human health issues.


Assuntos
Benzo(a)pireno/toxicidade , Dano ao DNA/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Células Cultivadas , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Mutagênese/fisiologia , Testes de Mutagenicidade/métodos , Linfócitos T/metabolismo
5.
PLoS One ; 8(3): e58591, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484039

RESUMO

Colorectal neoplasia is the third most common cancer worldwide. Environmental factors such as diet are known to be involved in the etiology of this cancer. Several epidemiological studies have suggested that specific neo-formed mutagenic compounds related to meat consumption are an underlying factor involved in the association between diet and colorectal cancer. Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) are known mutagens and possible human carcinogens formed at the same time in meat during cooking processes. We studied the genotoxicity of the model PAH benzo(a)pyrene (B(a)P) and HCA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), alone or in mixture, using the mouse intestinal cell line Apc(Min/+), mimicking the early step of colorectal carcinogenesis, and control Apc(+/+) cells. The genotoxicity of B(a)P and PhIP was investigated using both cell lines, through the quantification of B(a)P and PhIP derived DNA adducts, as well as the use of a genotoxic assay based on histone H2AX phosphorylation quantification. Our results demonstrate that heterozygous Apc mutated cells are more effective to metabolize B(a)P. We also established in different experiments that PhIP and B(a)P were more genotoxic on Apc (Min/+) cells compared to Apc (+/+) . Moreover when tested in mixture, we observed a combined genotoxicity of B(a)P and PhIP on the two cell lines, with an increase of PhIP derived DNA adducts in the presence of B(a)P. Because of their genotoxic effects observed on heterozygous Apc mutated cells and their possible combined genotoxic effects, both B(a)P and PhIP, taken together, could be implicated in the observed association between meat consumption and colorectal cancer.


Assuntos
Benzo(a)pireno/toxicidade , Neoplasias Colorretais/induzido quimicamente , Imidazóis/toxicidade , Carne/efeitos adversos , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Adutos de DNA/efeitos dos fármacos , Histonas/efeitos dos fármacos , Histonas/metabolismo , Humanos , Mucosa Intestinal/citologia , Carne/análise , Camundongos , Testes de Mutagenicidade , Fosforilação/efeitos dos fármacos , Espectrometria de Massas em Tandem
6.
Environ Sci Pollut Res Int ; 20(5): 2705-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23314706

RESUMO

Complex mixtures of contaminants with potential adverse effects on human health and wildlife are found in the environment and in the food chain. These mixtures include numerous anthropogenic compounds of various origins and structures, which may behave as endocrine disruptors. Mixture's complexity is further enhanced by biotic and abiotic transformations. It is therefore necessary to develop new strategies allowing the identification of the structure of known, as well as unknown, nuclear receptor (NR) ligands present in complex matrices. We explored the possibility to use NR-based affinity columns to characterize the presence of bioactive molecules in environmental complex mixtures. Estrogen receptor α (ERα)-based affinity columns were used to trap and purify estrogenic substances present in surface sediment samples collected in a French river under mixed anthropogenic pressure. We combined biological, biochemical and analytical approaches to characterize the structure of ligands retained on columns and demonstrate the presence of known active molecules such as bisphenol A and octylphenol, but also of unexpected ERα ligands (n-butylparaben, hydroxyl-methyl-benzofuranone). High resolution mass spectrometry results demonstrate that ERα affinity columns can be used for the isolation, purification and identification of known as well as unknown estrogenic contaminants present in complex matrices.


Assuntos
Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Receptor alfa de Estrogênio/química , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão/métodos , Disruptores Endócrinos/química , Humanos , Ligantes , Células MCF-7 , Espectrometria de Massas/métodos , Transfecção , Poluentes Químicos da Água/química
7.
J Agric Food Chem ; 60(7): 1728-36, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22276578

RESUMO

This study compared the metabolic fate of [(14)C]-DCP, [(14)C]-residues from radish plants, and purified [(14)C]-DCP-(acetyl)glucose following oral administration in rats. A rapid excretion of radioactivity in urine occurred for [(14)C]-DCP, [(14)C]-DCP-(acetyl)glucose, and soluble residues, 69, 85, and 69% within 48 h, respectively. Radio-HPLC profiles of 0-24 h urine from rats fed [(14)C]-DCP and [(14)C]-DCP-(acetyl)glucose were close and qualitatively similar to those obtained from plant residues. No trace of native plant residues was detected under the study conditions. The structures of the two major peaks were identified by MS as the glucuronide and the sulfate conjugates of DCP. The characterization of a dehydrated glucuronide conjugate by MS and NMR of DCP was unusual. In contrast to soluble residues, bound residues were mainly excreted in feces, 90% within 48 h, whereas total residues were eliminated in both urine and feces. For total residues, the radioactivity in feces was higher than expected from the percentage of soluble and bound residues in radish plants. This result highlighted that less absorption took place when residues were present in the plant matrix as compared to plant-free residues and DCP.


Assuntos
Clorofenóis/farmacocinética , Poluentes Ambientais/farmacocinética , Glucuronídeos/metabolismo , Plantas Comestíveis/metabolismo , Animais , Disponibilidade Biológica , Radioisótopos de Carbono , Células Cultivadas , Clorofenóis/metabolismo , Clorofenóis/urina , Poluentes Ambientais/metabolismo , Fezes/química , Masculino , Plantas Comestíveis/química , Raphanus/química , Raphanus/metabolismo , Ratos , Sulfatos/metabolismo , Nicotiana/metabolismo
8.
Toxicol Lett ; 199(1): 22-33, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20696221

RESUMO

Biotransformation of chemicals by the skin is a critical determinant of systemic exposure in humans following dermal absorption. Pig ear skin potentially represents a valuable alternative model since it closely resembles to human skin. We developed an ex vivo pig ear skin system which absorption, diffusion and metabolic capabilities were investigated using benzo(a)pyrene [B(a)P] as a model molecule. The potential of the ex vivo pig ear skin model to biotransform xenobiotics was compared with metabolic data obtained using dermal and hepatic microsomes from human and pig. (14)C-B(a)P [50-800 nmol] was applied on the surface of skin models. The diffusion and the production of B(a)P metabolites were quantified by radio-HPLC, LC-MS/MS and NMR. B(a)P was extensively metabolized by pig ear skin explants, the major metabolites being B(a)P-glucuronide and sulfate conjugates. B(a)P-OHs, B(a)P-diols, B(a)P-catechols and B(a)P-diones were also identified. In the pig ear skin model developed, skin diffusion was maintained over 72 h and both phase I and phase II activities were expressed, with the formation of similar metabolites as produced in incubations with liver and skin microsomal fractions. This ex vivo model, which combines a functional skin barrier and active biotransformation capabilities, appears to represent a valuable alternative tool in transdermal exposure studies.


Assuntos
Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Biotransformação , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Orelha Externa , Feminino , Humanos , Técnicas In Vitro , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos , Absorção Cutânea/fisiologia , Espectrometria de Massas por Ionização por Electrospray , Suínos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA